home *** CD-ROM | disk | FTP | other *** search
- /* Definitions of target machine for GNU compiler, for the pdp-11
- Copyright (C) 1994 Free Software Foundation, Inc.
- Contributed by Michael K. Gschwind (mike@vlsivie.tuwien.ac.at).
-
- This file is part of GNU CC.
-
- GNU CC is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 1, or (at your option)
- any later version.
-
- GNU CC is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with GNU CC; see the file COPYING. If not, write to
- the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
-
-
- /* declarations */
- char *output_jump();
- char *output_move_double();
- char *output_move_quad();
- char *output_block_move();
-
- /* check whther load_fpu_reg or not */
- #define LOAD_FPU_REG_P(x) ((x)>=8 && (x)<=11)
- #define NO_LOAD_FPU_REG_P(x) ((x)==12 || (x)==13)
- #define FPU_REG_P(x) (LOAD_FPU_REG_P(x) || NO_LOAD_FPU_REG_P(x))
- #define CPU_REG_P(x) ((x)<8)
-
- /* Names to predefine in the preprocessor for this target machine. */
-
- #define CPP_PREDEFINES "-Dpdp11"
-
- /* Print subsidiary information on the compiler version in use. */
- #define TARGET_VERSION fprintf (stderr, " (pdp11)");
-
-
- /* Generate DBX debugging information. */
-
- /* #define DBX_DEBUGGING_INFO */
-
- /* Run-time compilation parameters selecting different hardware subsets.
- */
-
- extern int target_flags;
-
- /* Macro to define tables used to set the flags.
- This is a list in braces of pairs in braces,
- each pair being { "NAME", VALUE }
- where VALUE is the bits to set or minus the bits to clear.
- An empty string NAME is used to identify the default VALUE. */
-
- #define TARGET_SWITCHES \
- { { "fpu", 1}, \
- { "soft-float", -1}, \
- /* return float result in ac0 */\
- { "ac0", 2}, \
- { "no-ac0", -2}, \
- /* is 11/40 */ \
- { "40", 4}, \
- { "no-40", -4}, \
- /* is 11/45 */ \
- { "45", 8}, \
- { "no-45", -8}, \
- /* is 11/10 */ \
- { "10", -12}, \
- /* use movstrhi for bcopy */ \
- { "bcopy", 16}, \
- { "bcopy-builtin", -16}, \
- /* use 32 bit for int */ \
- { "int32", 32}, \
- { "no-int16", 32}, \
- { "int16", -32}, \
- { "no-int32", -32}, \
- /* use 32 bit for float */ \
- { "float32", 64}, \
- { "no-float64", 64}, \
- { "float64", -64}, \
- { "no-float32", -64}, \
- /* allow abshi pattern? - can trigger "optimizations" which make code SLOW! */\
- { "abshi", 128}, \
- { "no-abshi", -128}, \
- /* is branching expensive - on a PDP, it's actually really cheap */ \
- /* this is just to play aroound and check what code gcc generates */ \
- { "branch-expensive", 256}, \
- { "branch-cheap", -256}, \
- /* optimize for space instead of time - just in a couple of places */ \
- { "space", 512 }, \
- { "time", -512 }, \
- /* split instruction and data memory? */ \
- { "split", 1024 }, \
- { "no-split", -1024 }, \
- /* default */ \
- { "", TARGET_DEFAULT} \
- }
-
- #define TARGET_DEFAULT (1 | 8 | 128)
-
- #define TARGET_FPU (target_flags & 1)
- #define TARGET_SOFT_FLOAT (!TARGET_FPU)
-
- #define TARGET_AC0 ((target_flags & 2) && TARGET_FPU)
- #define TARGET_NO_AC0 (! TARGET_AC0)
-
- #define TARGET_45 (target_flags & 8)
- #define TARGET_40_PLUS ((target_flags & 4) || (target_flags))
- #define TARGET_10 (! TARGET_40_PLUS)
-
- #define TARGET_BCOPY_BUILTIN (! (target_flags & 16))
-
- #define TARGET_INT16 (! TARGET_INT32)
- #define TARGET_INT32 (target_flags & 32)
-
- #define TARGET_FLOAT32 (target_flags & 64)
- #define TARGET_FLOAT64 (! TARGET_FLOAT32)
-
- #define TARGET_ABSHI_BUILTIN (target_flags & 128)
-
- #define TARGET_BRANCH_EXPENSIVE (target_flags & 256)
- #define TARGET_BRANCH_CHEAP (!TARGET_BRANCH_EXPENSIVE)
-
- #define TARGET_SPACE (target_flags & 512)
- #define TARGET_TIME (! TARGET_SPACE)
-
- #define TARGET_SPLIT (target_flags & 1024)
- #define TARGET_NOSPLIT (! TARGET_SPLIT)
-
-
- /* TYPE SIZES */
- #define CHAR_TYPE_SIZE 8
- #define SHORT_TYPE_SIZE 16
- #define INT_TYPE_SIZE (TARGET_INT16 ? 16 : 32)
- #define LONG_TYPE_SIZE 32
- #define LONG_LONG_TYPE_SIZE 64
-
- /* if we set FLOAT_TYPE_SIZE to 32, we could have the benefit
- of saving core for huge arrays - the definitions are
- already in md - but floats can never reside in
- an FPU register - we keep the FPU in double float mode
- all the time !! */
- #define FLOAT_TYPE_SIZE (TARGET_FLOAT32 ? 32 : 64)
- #define DOUBLE_TYPE_SIZE 64
- #define LONG_DOUBLE_TYPE_SIZE 64
-
- /* machine types from ansi */
- #define SIZE_TYPE "unsigned int" /* definition of size_t */
-
- /* is used in cexp.y - we don't have target_flags there,
- so just give default definition
-
- hope it does not come back to haunt us! */
- #define WCHAR_TYPE "int" /* or long int???? */
- #define WCHAR_TYPE_SIZE 16
-
- #define PTRDIFF_TYPE "int"
-
- /* target machine storage layout */
-
- /* Define this if most significant bit is lowest numbered
- in instructions that operate on numbered bit-fields. */
- #define BITS_BIG_ENDIAN 0
-
- /* Define this if most significant byte of a word is the lowest numbered. */
- #define BYTES_BIG_ENDIAN 0
-
- /* Define this if most significant word of a multiword number is numbered. */
- #define WORDS_BIG_ENDIAN 1
-
- /* number of bits in an addressible storage unit */
- #define BITS_PER_UNIT 8
-
- /* Width in bits of a "word", which is the contents of a machine register.
- Note that this is not necessarily the width of data type `int';
- if using 16-bit ints on a 68000, this would still be 32.
- But on a machine with 16-bit registers, this would be 16. */
- /* This is a machine with 16-bit registers */
- #define BITS_PER_WORD 16
-
- /* Width of a word, in units (bytes).
-
- UNITS OR BYTES - seems like units */
- #define UNITS_PER_WORD 2
-
- /* Maximum sized of reasonable data type
- DImode or Dfmode ...*/
- #define MAX_FIXED_MODE_SIZE 64
-
- /* Width in bits of a pointer.
- See also the macro `Pmode' defined below. */
- #define POINTER_SIZE 16
-
- /* Allocation boundary (in *bits*) for storing pointers in memory. */
- #define POINTER_BOUNDARY 16
-
- /* Allocation boundary (in *bits*) for storing arguments in argument list. */
- #define PARM_BOUNDARY 16
-
- /* Allocation boundary (in *bits*) for the code of a function. */
- #define FUNCTION_BOUNDARY 16
-
- /* Alignment of field after `int : 0' in a structure. */
- #define EMPTY_FIELD_BOUNDARY 16
-
- /* No data type wants to be aligned rounder than this. */
- #define BIGGEST_ALIGNMENT 16
-
- /* Define this if move instructions will actually fail to work
- when given unaligned data. */
- #define STRICT_ALIGNMENT 1
-
- /* Standard register usage. */
-
- /* Number of actual hardware registers.
- The hardware registers are assigned numbers for the compiler
- from 0 to just below FIRST_PSEUDO_REGISTER.
- All registers that the compiler knows about must be given numbers,
- even those that are not normally considered general registers.
-
- we have 8 integer registers, plus 6 float
- (don't use scratch float !) */
-
- #define FIRST_PSEUDO_REGISTER 14
-
- /* 1 for registers that have pervasive standard uses
- and are not available for the register allocator.
-
- On the pdp, these are:
- Reg 7 = pc;
- reg 6 = sp;
- reg 5 = fp; not necessarily!
- */
-
- /* don't let them touch fp regs for the time being !*/
-
- #define FIXED_REGISTERS \
- {0, 0, 0, 0, 0, 0, 1, 1, \
- 0, 0, 0, 0, 0, 0 }
-
-
-
- /* 1 for registers not available across function calls.
- These must include the FIXED_REGISTERS and also any
- registers that can be used without being saved.
- The latter must include the registers where values are returned
- and the register where structure-value addresses are passed.
- Aside from that, you can include as many other registers as you like. */
-
- /* don't know about fp */
- #define CALL_USED_REGISTERS \
- {1, 1, 0, 0, 0, 0, 1, 1, \
- 0, 0, 0, 0, 0, 0 }
-
-
- /* Make sure everything's fine if we *don't* have an FPU.
- This assumes that putting a register in fixed_regs will keep the
- compiler's mitts completely off it. We don't bother to zero it out
- of register classes.
- */
- #define CONDITIONAL_REGISTER_USAGE \
- { \
- int i; \
- HARD_REG_SET x; \
- if (!TARGET_FPU) \
- { \
- COPY_HARD_REG_SET (x, reg_class_contents[(int)FPU_REGS]); \
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ ) \
- if (TEST_HARD_REG_BIT (x, i)) \
- fixed_regs[i] = call_used_regs[i] = 1; \
- } \
- \
- if (TARGET_AC0) \
- call_used_regs[8] = 1; \
- }
-
- /* Return number of consecutive hard regs needed starting at reg REGNO
- to hold something of mode MODE.
- This is ordinarily the length in words of a value of mode MODE
- but can be less for certain modes in special long registers.
- */
-
- #define HARD_REGNO_NREGS(REGNO, MODE) \
- ((REGNO < 8)? \
- ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) \
- :1)
-
-
- /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
- On the pdp, the cpu registers can hold any mode - check alignment
-
- FPU can only hold DF - simplifies life!
- */
- #define HARD_REGNO_MODE_OK(REGNO, MODE) \
- ((REGNO < 8)? \
- ((GET_MODE_BITSIZE(MODE) <= 16) \
- || (GET_MODE_BITSIZE(MODE) == 32 && !(REGNO & 1))) \
- :(MODE) == DFmode)
-
-
- /* Value is 1 if it is a good idea to tie two pseudo registers
- when one has mode MODE1 and one has mode MODE2.
- If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
- for any hard reg, then this must be 0 for correct output. */
- #define MODES_TIEABLE_P(MODE1, MODE2) 0
-
- /* Specify the registers used for certain standard purposes.
- The values of these macros are register numbers. */
-
- /* the pdp11 pc overloaded on a register that the compiler knows about. */
- #define PC_REGNUM 7
-
- /* Register to use for pushing function arguments. */
- #define STACK_POINTER_REGNUM 6
-
- /* Base register for access to local variables of the function. */
- #define FRAME_POINTER_REGNUM 5
-
- /* Value should be nonzero if functions must have frame pointers.
- Zero means the frame pointer need not be set up (and parms
- may be accessed via the stack pointer) in functions that seem suitable.
- This is computed in `reload', in reload1.c.
- */
-
- #define FRAME_POINTER_REQUIRED 0
-
- /* Base register for access to arguments of the function. */
- #define ARG_POINTER_REGNUM 5
-
- /* Register in which static-chain is passed to a function. */
- /* ??? - i don't want to give up a reg for this! */
- #define STATIC_CHAIN_REGNUM 4
-
- /* Register in which address to store a structure value
- is passed to a function.
- let's make it an invisible first argument!!! */
-
- #define STRUCT_VALUE 0
-
-
- /* Define the classes of registers for register constraints in the
- machine description. Also define ranges of constants.
-
- One of the classes must always be named ALL_REGS and include all hard regs.
- If there is more than one class, another class must be named NO_REGS
- and contain no registers.
-
- The name GENERAL_REGS must be the name of a class (or an alias for
- another name such as ALL_REGS). This is the class of registers
- that is allowed by "g" or "r" in a register constraint.
- Also, registers outside this class are allocated only when
- instructions express preferences for them.
-
- The classes must be numbered in nondecreasing order; that is,
- a larger-numbered class must never be contained completely
- in a smaller-numbered class.
-
- For any two classes, it is very desirable that there be another
- class that represents their union. */
-
- /* The pdp has a couple of classes:
-
- MUL_REGS are used for odd numbered regs, to use in 16 bit multiplication
- (even numbered do 32 bit multiply)
- LMUL_REGS long multiply registers (even numbered regs )
- (don't need them, all 32 bit regs are even numbered!)
- GENERAL_REGS is all cpu
- LOAD_FPU_REGS is the first four cpu regs, they are easier to load
- NO_LOAD_FPU_REGS is ac4 and ac5, currently - difficult to load them
- FPU_REGS is all fpu regs
- */
-
- enum reg_class { NO_REGS, MUL_REGS, GENERAL_REGS, LOAD_FPU_REGS, NO_LOAD_FPU_REGS, FPU_REGS, ALL_REGS, LIM_REG_CLASSES };
-
- #define N_REG_CLASSES (int) LIM_REG_CLASSES
-
- /* have to allow this till cmpsi/tstsi are fixed in a better way !! */
- #define SMALL_REGISTER_CLASSES
-
- /* Since GENERAL_REGS is the same class as ALL_REGS,
- don't give it a different class number; just make it an alias. */
-
- /* #define GENERAL_REGS ALL_REGS */
-
- /* Give names of register classes as strings for dump file. */
-
- #define REG_CLASS_NAMES {"NO_REGS", "MUL_REGS", "GENERAL_REGS", "LOAD_FPU_REGS", "NO_LOAD_FPU_REGS", "FPU_REGS", "ALL_REGS" }
-
- /* Define which registers fit in which classes.
- This is an initializer for a vector of HARD_REG_SET
- of length N_REG_CLASSES. */
-
- #define REG_CLASS_CONTENTS {0, 0x00aa, 0x00ff, 0x0f00, 0x3000, 0x3f00, 0x3fff}
-
- /* The same information, inverted:
- Return the class number of the smallest class containing
- reg number REGNO. This could be a conditional expression
- or could index an array. */
-
- #define REGNO_REG_CLASS(REGNO) \
- ((REGNO)>=8?((REGNO)<=11?LOAD_FPU_REGS:NO_LOAD_FPU_REGS):((REGNO&1)?MUL_REGS:GENERAL_REGS))
-
-
- /* The class value for index registers, and the one for base regs. */
- #define INDEX_REG_CLASS GENERAL_REGS
- #define BASE_REG_CLASS GENERAL_REGS
-
- /* Get reg_class from a letter such as appears in the machine description. */
-
- #define REG_CLASS_FROM_LETTER(C) \
- ((C) == 'f' ? FPU_REGS : \
- ((C) == 'd' ? MUL_REGS : \
- ((C) == 'a' ? LOAD_FPU_REGS : NO_REGS)))
-
-
- /* The letters I, J, K, L and M in a register constraint string
- can be used to stand for particular ranges of immediate operands.
- This macro defines what the ranges are.
- C is the letter, and VALUE is a constant value.
- Return 1 if VALUE is in the range specified by C.
-
- I bits 31-16 0000
- J bits 15-00 0000
- K completely random 32 bit
- L,M,N -1,1,0 respectively
- O where doing shifts in sequence is faster than
- one big shift
- */
-
- #define CONST_OK_FOR_LETTER_P(VALUE, C) \
- ((C) == 'I' ? ((VALUE) & 0xffff0000) == 0 \
- : (C) == 'J' ? ((VALUE) & 0x0000ffff) == 0 \
- : (C) == 'K' ? (((VALUE) & 0xffff0000) != 0 \
- && ((VALUE) & 0x0000ffff) != 0) \
- : (C) == 'L' ? ((VALUE) == 1) \
- : (C) == 'M' ? ((VALUE) == -1) \
- : (C) == 'N' ? ((VALUE) == 0) \
- : (C) == 'O' ? (abs(VALUE) >1 && abs(VALUE) <= 4) \
- : 0)
-
- /* Similar, but for floating constants, and defining letters G and H.
- Here VALUE is the CONST_DOUBLE rtx itself. */
-
- #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
- ((C) == 'G' && XINT (VALUE, 0) == 0 && XINT (VALUE, 1) == 0)
-
-
- /* Letters in the range `Q' through `U' may be defined in a
- machine-dependent fashion to stand for arbitrary operand types.
- The machine description macro `EXTRA_CONSTRAINT' is passed the
- operand as its first argument and the constraint letter as its
- second operand.
-
- `Q' is for memory refereces using take more than 1 instruction.
- `R' is for memory refereces which take 1 word for the instruction. */
-
- #define EXTRA_CONSTRAINT(OP,CODE) \
- ((GET_CODE (OP) != MEM) ? 0 \
- : !legitimate_address_p (GET_MODE (OP), XEXP (OP, 0)) ? 0 \
- : ((CODE) == 'Q') ? !simple_memory_operand (OP, GET_MODE (OP)) \
- : ((CODE) == 'R') ? simple_memory_operand (OP, GET_MODE (OP)) \
- : 0)
-
- /* Given an rtx X being reloaded into a reg required to be
- in class CLASS, return the class of reg to actually use.
- In general this is just CLASS; but on some machines
- in some cases it is preferable to use a more restrictive class.
-
- loading is easier into LOAD_FPU_REGS than FPU_REGS! */
-
- #define PREFERRED_RELOAD_CLASS(X,CLASS) \
- (((CLASS) != FPU_REGS)?(CLASS):LOAD_FPU_REGS)
-
- #define SECONDARY_RELOAD_CLASS(CLASS,MODE,x) \
- (((CLASS) == NO_LOAD_FPU_REGS && !(REG_P(x) && LOAD_FPU_REG_P(REGNO(x))))?LOAD_FPU_REGS:NO_REGS)
-
- /* Return the maximum number of consecutive registers
- needed to represent mode MODE in a register of class CLASS. */
- #define CLASS_MAX_NREGS(CLASS, MODE) \
- ((CLASS == GENERAL_REGS || CLASS == MUL_REGS)? \
- ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD): \
- 1 \
- )
-
-
- /* Stack layout; function entry, exit and calling. */
-
- /* Define this if pushing a word on the stack
- makes the stack pointer a smaller address. */
- #define STACK_GROWS_DOWNWARD
-
- /* Define this if the nominal address of the stack frame
- is at the high-address end of the local variables;
- that is, each additional local variable allocated
- goes at a more negative offset in the frame.
- */
- #define FRAME_GROWS_DOWNWARD
-
- /* Offset within stack frame to start allocating local variables at.
- If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
- first local allocated. Otherwise, it is the offset to the BEGINNING
- of the first local allocated. */
- #define STARTING_FRAME_OFFSET 0
-
- /* If we generate an insn to push BYTES bytes,
- this says how many the stack pointer really advances by.
- On the pdp11, the stack is on an even boundary */
- #define PUSH_ROUNDING(BYTES) ((BYTES + 1) & ~1)
-
- /* current_first_parm_offset stores the # of registers pushed on the
- stack */
- extern int current_first_parm_offset;
-
- /* Offset of first parameter from the argument pointer register value.
- For the pdp11, this is non-zero to account for the return address.
- 1 - return address
- 2 - frame pointer (always saved, even when not used!!!!)
- -- chnage some day !!!:q!
-
- */
- #define FIRST_PARM_OFFSET(FNDECL) 4
-
- /* Value is 1 if returning from a function call automatically
- pops the arguments described by the number-of-args field in the call.
- FUNTYPE is the data type of the function (as a tree),
- or for a library call it is an identifier node for the subroutine name. */
-
- #define RETURN_POPS_ARGS(FUNTYPE,SIZE) 0
-
- /* Define how to find the value returned by a function.
- VALTYPE is the data type of the value (as a tree).
- If the precise function being called is known, FUNC is its FUNCTION_DECL;
- otherwise, FUNC is 0. */
- #define BASE_RETURN_VALUE_REG(MODE) \
- ((MODE) == DFmode ? 8 : 0)
-
- /* On the pdp11 the value is found in R0 (or ac0???
- not without FPU!!!! ) */
-
- #define FUNCTION_VALUE(VALTYPE, FUNC) \
- gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_RETURN_VALUE_REG(TYPE_MODE(VALTYPE)))
-
- /* and the called function leaves it in the first register.
- Difference only on machines with register windows. */
-
- #define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
- gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_RETURN_VALUE_REG(TYPE_MODE(VALTYPE)))
-
- /* Define how to find the value returned by a library function
- assuming the value has mode MODE. */
-
- #define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, BASE_RETURN_VALUE_REG(MODE))
-
- /* 1 if N is a possible register number for a function value
- as seen by the caller.
- On the pdp, the first "output" reg is the only register thus used.
-
- maybe ac0 ? - as option someday! */
-
- #define FUNCTION_VALUE_REGNO_P(N) (((N) == 0) || (TARGET_AC0 && (N) == 8))
-
- /* should probably return DImode and DFmode in memory,lest
- we fill up all regs!
-
- have to, else we crash - exceptio: maybe return result in
- ac0 if DFmode and FPU present - compatibility problem with
- libraries for non-floating point ...
- */
-
- #define RETURN_IN_MEMORY(TYPE) \
- (TYPE_MODE(TYPE) == DImode || (TYPE_MODE(TYPE) == DFmode && ! TARGET_AC0))
-
-
- /* 1 if N is a possible register number for function argument passing.
- - not used on pdp */
-
- #define FUNCTION_ARG_REGNO_P(N) 0
-
- /* Define a data type for recording info about an argument list
- during the scan of that argument list. This data type should
- hold all necessary information about the function itself
- and about the args processed so far, enough to enable macros
- such as FUNCTION_ARG to determine where the next arg should go.
-
- */
-
- #define CUMULATIVE_ARGS int
-
- /* Initialize a variable CUM of type CUMULATIVE_ARGS
- for a call to a function whose data type is FNTYPE.
- For a library call, FNTYPE is 0.
-
- ...., the offset normally starts at 0, but starts at 1 word
- when the function gets a structure-value-address as an
- invisible first argument. */
-
- #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \
- ((CUM) = 0)
-
- /* Update the data in CUM to advance over an argument
- of mode MODE and data type TYPE.
- (TYPE is null for libcalls where that information may not be available.)
-
- */
-
-
- #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
- ((CUM) += ((MODE) != BLKmode \
- ? (GET_MODE_SIZE (MODE)) \
- : (int_size_in_bytes (TYPE))))
-
- /* Determine where to put an argument to a function.
- Value is zero to push the argument on the stack,
- or a hard register in which to store the argument.
-
- MODE is the argument's machine mode.
- TYPE is the data type of the argument (as a tree).
- This is null for libcalls where that information may
- not be available.
- CUM is a variable of type CUMULATIVE_ARGS which gives info about
- the preceding args and about the function being called.
- NAMED is nonzero if this argument is a named parameter
- (otherwise it is an extra parameter matching an ellipsis). */
-
- #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) 0
-
- /* Define where a function finds its arguments.
- This would be different from FUNCTION_ARG if we had register windows. */
- /*
- #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
- FUNCTION_ARG (CUM, MODE, TYPE, NAMED)
- */
-
- /* For an arg passed partly in registers and partly in memory,
- this is the number of registers used.
- For args passed entirely in registers or entirely in memory, zero. */
-
- #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
-
- /* This macro generates the assembly code for function entry. */
- #define FUNCTION_PROLOGUE(FILE, SIZE) \
- output_function_prologue(FILE, SIZE);
-
- /* Output assembler code to FILE to increment profiler label # LABELNO
- for profiling a function entry. */
-
- #define FUNCTION_PROFILER(FILE, LABELNO) \
- abort ();
-
- /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
- the stack pointer does not matter. The value is tested only in
- functions that have frame pointers.
- No definition is equivalent to always zero. */
-
- extern int may_call_alloca;
- extern int current_function_pretend_args_size;
-
- #define EXIT_IGNORE_STACK 1
-
- /* This macro generates the assembly code for function exit,
- on machines that need it. If FUNCTION_EPILOGUE is not defined
- then individual return instructions are generated for each
- return statement. Args are same as for FUNCTION_PROLOGUE.
- */
-
- #define FUNCTION_EPILOGUE(FILE, SIZE) \
- output_function_epilogue(FILE, SIZE);
-
- #define INITIAL_FRAME_POINTER_OFFSET(DEPTH_VAR) \
- { \
- int offset, regno; \
- offset = get_frame_size(); \
- for (regno = 0; regno < 8; regno++) \
- if (regs_ever_live[regno] && ! call_used_regs[regno]) \
- offset += 2; \
- for (regno = 8; regno < 14; regno++) \
- if (regs_ever_live[regno] && ! call_used_regs[regno]) \
- offset += 8; \
- /* offset -= 2; no fp on stack frame */ \
- (DEPTH_VAR) = offset; \
- }
-
-
- /* Addressing modes, and classification of registers for them. */
-
- #define HAVE_POST_INCREMENT
- /* #define HAVE_POST_DECREMENT */
-
- #define HAVE_PRE_DECREMENT
- /* #define HAVE_PRE_INCREMENT */
-
- /* Macros to check register numbers against specific register classes. */
-
- /* These assume that REGNO is a hard or pseudo reg number.
- They give nonzero only if REGNO is a hard reg of the suitable class
- or a pseudo reg currently allocated to a suitable hard reg.
- Since they use reg_renumber, they are safe only once reg_renumber
- has been allocated, which happens in local-alloc.c. */
-
- #define REGNO_OK_FOR_INDEX_P(REGNO) \
- ((REGNO) < 8 || (unsigned) reg_renumber[REGNO] < 8)
- #define REGNO_OK_FOR_BASE_P(REGNO) \
- ((REGNO) < 8 || (unsigned) reg_renumber[REGNO] < 8)
-
- /* Now macros that check whether X is a register and also,
- strictly, whether it is in a specified class.
- */
-
-
-
- /* Maximum number of registers that can appear in a valid memory address. */
-
- #define MAX_REGS_PER_ADDRESS 2
-
- /* Recognize any constant value that is a valid address. */
-
- #define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
-
- /* Nonzero if the constant value X is a legitimate general operand.
- It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
-
- #define LEGITIMATE_CONSTANT_P(X) (1)
-
- /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
- and check its validity for a certain class.
- We have two alternate definitions for each of them.
- The usual definition accepts all pseudo regs; the other rejects
- them unless they have been allocated suitable hard regs.
- The symbol REG_OK_STRICT causes the latter definition to be used.
-
- Most source files want to accept pseudo regs in the hope that
- they will get allocated to the class that the insn wants them to be in.
- Source files for reload pass need to be strict.
- After reload, it makes no difference, since pseudo regs have
- been eliminated by then. */
-
- #ifndef REG_OK_STRICT
-
- /* Nonzero if X is a hard reg that can be used as an index
- or if it is a pseudo reg. */
- #define REG_OK_FOR_INDEX_P(X) (1)
- /* Nonzero if X is a hard reg that can be used as a base reg
- or if it is a pseudo reg. */
- #define REG_OK_FOR_BASE_P(X) (1)
-
- #else
-
- /* Nonzero if X is a hard reg that can be used as an index. */
- #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
- /* Nonzero if X is a hard reg that can be used as a base reg. */
- #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
-
- #endif
-
- /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
- that is a valid memory address for an instruction.
- The MODE argument is the machine mode for the MEM expression
- that wants to use this address.
-
- */
-
- #define GO_IF_LEGITIMATE_ADDRESS(mode, operand, ADDR) \
- { \
- rtx xfoob; \
- \
- /* accept (R0) */ \
- if (GET_CODE (operand) == REG \
- && REG_OK_FOR_BASE_P(operand)) \
- goto ADDR; \
- \
- /* accept @#address */ \
- if (CONSTANT_ADDRESS_P (operand)) \
- goto ADDR; \
- \
- /* accept X(R0) */ \
- if (GET_CODE (operand) == PLUS \
- && GET_CODE (XEXP (operand, 0)) == REG \
- && REG_OK_FOR_BASE_P (XEXP (operand, 0)) \
- && CONSTANT_ADDRESS_P (XEXP (operand, 1))) \
- goto ADDR; \
- \
- /* accept -(R0) */ \
- if (GET_CODE (operand) == PRE_DEC \
- && GET_CODE (XEXP (operand, 0)) == REG \
- && REG_OK_FOR_BASE_P (XEXP (operand, 0))) \
- goto ADDR; \
- \
- /* accept (R0)+ */ \
- if (GET_CODE (operand) == POST_INC \
- && GET_CODE (XEXP (operand, 0)) == REG \
- && REG_OK_FOR_BASE_P (XEXP (operand, 0))) \
- goto ADDR; \
- \
- /* handle another level of indirection ! */ \
- if (GET_CODE(operand) != MEM) \
- goto fail; \
- \
- xfoob = XEXP (operand, 0); \
- \
- /* (MEM:xx (MEM:xx ())) is not valid for SI, DI and currently */ \
- /* also forbidden for float, because we have to handle this */ \
- /* in output_move_double and/or output_move_quad() - we could */ \
- /* do it, but currently it's not worth it!!! */ \
- /* now that DFmode cannot go into CPU register file, */ \
- /* maybe I should allow float ... */ \
- /* but then I have to handle memory-to-memory moves in movdf ?? */ \
- \
- if (GET_MODE_BITSIZE(mode) > 16) \
- goto fail; \
- \
- /* accept @(R0) - which is @0(R0) */ \
- if (GET_CODE (xfoob) == REG \
- && REG_OK_FOR_BASE_P(xfoob)) \
- goto ADDR; \
- \
- /* accept @address */ \
- if (CONSTANT_ADDRESS_P (xfoob)) \
- goto ADDR; \
- \
- /* accept @X(R0) */ \
- if (GET_CODE (xfoob) == PLUS \
- && GET_CODE (XEXP (xfoob, 0)) == REG \
- && REG_OK_FOR_BASE_P (XEXP (xfoob, 0)) \
- && CONSTANT_ADDRESS_P (XEXP (xfoob, 1))) \
- goto ADDR; \
- \
- /* accept @-(R0) */ \
- if (GET_CODE (xfoob) == PRE_DEC \
- && GET_CODE (XEXP (xfoob, 0)) == REG \
- && REG_OK_FOR_BASE_P (XEXP (xfoob, 0))) \
- goto ADDR; \
- \
- /* accept @(R0)+ */ \
- if (GET_CODE (xfoob) == POST_INC \
- && GET_CODE (XEXP (xfoob, 0)) == REG \
- && REG_OK_FOR_BASE_P (XEXP (xfoob, 0))) \
- goto ADDR; \
- \
- /* anything else is illegal */ \
- fail: ; \
- }
-
-
- /* Try machine-dependent ways of modifying an illegitimate address
- to be legitimate. If we find one, return the new, valid address.
- This macro is used in only one place: `memory_address' in explow.c.
-
- OLDX is the address as it was before break_out_memory_refs was called.
- In some cases it is useful to look at this to decide what needs to be done.
-
- MODE and WIN are passed so that this macro can use
- GO_IF_LEGITIMATE_ADDRESS.
-
- It is always safe for this macro to do nothing. It exists to recognize
- opportunities to optimize the output. */
-
- #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
-
-
- /* Go to LABEL if ADDR (a legitimate address expression)
- has an effect that depends on the machine mode it is used for.
- On the the pdp this is for predec/postinc */
-
- #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
- { if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC) \
- goto LABEL; \
- }
-
-
- /* Specify the machine mode that this machine uses
- for the index in the tablejump instruction. */
- #define CASE_VECTOR_MODE HImode
-
- /* Define this if a raw index is all that is needed for a
- `tablejump' insn. */
- #define CASE_TAKES_INDEX_RAW
-
- /* Define this if the tablejump instruction expects the table
- to contain offsets from the address of the table.
- Do not define this if the table should contain absolute addresses. */
- /* #define CASE_VECTOR_PC_RELATIVE */
-
- /* Specify the tree operation to be used to convert reals to integers. */
- #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
-
- /* This is the kind of divide that is easiest to do in the general case. */
- #define EASY_DIV_EXPR TRUNC_DIV_EXPR
-
- /* Define this as 1 if `char' should by default be signed; else as 0. */
- #define DEFAULT_SIGNED_CHAR 1
-
- /* Max number of bytes we can move from memory to memory
- in one reasonably fast instruction.
- */
-
- #define MOVE_MAX 2
-
- /* Zero extension is faster if the target is known to be zero */
- /* #define SLOW_ZERO_EXTEND */
-
- /* Nonzero if access to memory by byte is slow and undesirable. -
- */
- #define SLOW_BYTE_ACCESS 0
-
- /* Do not break .stabs pseudos into continuations. */
- #define DBX_CONTIN_LENGTH 0
-
- /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
- is done just by pretending it is already truncated. */
- #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
-
-
- /* Add any extra modes needed to represent the condition code.
-
- CCFPmode is used for FPU, but should we use a separate reg? */
- #define EXTRA_CC_MODES CCFPmode
-
- /* the name for the mode above */
- #define EXTRA_CC_NAMES "CCFPmode"
-
- /* Give a comparison code (EQ, NE etc) and the first operand of a COMPARE,
- return the mode to be used for the comparison. For floating-point, CCFPmode
- should be used. */
-
- #define SELECT_CC_MODE(OP,X,Y) \
- (GET_MODE_CLASS(GET_MODE(X)) == MODE_FLOAT? CCFPmode : CCmode)
-
- /* We assume that the store-condition-codes instructions store 0 for false
- and some other value for true. This is the value stored for true. */
-
- /* #define STORE_FLAG_VALUE 1 */
-
- /* Specify the machine mode that pointers have.
- After generation of rtl, the compiler makes no further distinction
- between pointers and any other objects of this machine mode. */
- #define Pmode HImode
-
- /* A function address in a call instruction
- is a word address (for indexing purposes)
- so give the MEM rtx a word's mode. */
- #define FUNCTION_MODE HImode
-
- /* Define this if addresses of constant functions
- shouldn't be put through pseudo regs where they can be cse'd.
- Desirable on machines where ordinary constants are expensive
- but a CALL with constant address is cheap. */
- /* #define NO_FUNCTION_CSE */
-
- /* Compute the cost of computing a constant rtl expression RTX
- whose rtx-code is CODE. The body of this macro is a portion
- of a switch statement. If the code is computed here,
- return it with a return statement. Otherwise, break from the switch.
-
- -1, 0, 1 are cheaper for add, sub ...
- */
-
- #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
- case CONST_INT: \
- if (INTVAL(RTX) == 0 \
- || INTVAL(RTX) == -1 \
- || INTVAL(RTX) == 1) \
- return 0; \
- case CONST: \
- case LABEL_REF: \
- case SYMBOL_REF: \
- /* twice as expensive as REG */ \
- return 2; \
- case CONST_DOUBLE: \
- /* twice (or 4 times) as expensive as 16 bit */ \
- return 4;
-
- /* cost of moving one register class to another */
- #define REGISTER_MOVE_COST(CLASS1, CLASS2) register_move_cost(CLASS1, CLASS2)
-
- /* Tell emit-rtl.c how to initialize special values on a per-function base. */
- extern int optimize;
- extern struct rtx_def *cc0_reg_rtx;
-
- #define CC_STATUS_MDEP rtx
-
- #define CC_STATUS_MDEP_INIT (cc_status.mdep = 0)
-
- /* Tell final.c how to eliminate redundant test instructions. */
-
- /* Here we define machine-dependent flags and fields in cc_status
- (see `conditions.h'). */
-
- #define CC_IN_FPU 04000
-
- /* Do UPDATE_CC if EXP is a set, used in
- NOTICE_UPDATE_CC
-
- floats only do compare correctly, else nullify ...
-
- get cc0 out soon ...
- */
-
- /* Store in cc_status the expressions
- that the condition codes will describe
- after execution of an instruction whose pattern is EXP.
- Do not alter them if the instruction would not alter the cc's. */
-
- #define NOTICE_UPDATE_CC(EXP, INSN) \
- { if (GET_CODE (EXP) == SET) \
- { \
- notice_update_cc_on_set(EXP, INSN); \
- } \
- else if (GET_CODE (EXP) == PARALLEL \
- && GET_CODE (XVECEXP (EXP, 0, 0)) == SET) \
- { \
- notice_update_cc_on_set(XVECEXP (EXP, 0, 0), INSN); \
- } \
- else if (GET_CODE (EXP) == CALL) \
- { /* all bets are off */ CC_STATUS_INIT; } \
- if (cc_status.value1 && GET_CODE (cc_status.value1) == REG \
- && cc_status.value2 \
- && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2)) \
- printf ("here!\n", cc_status.value2 = 0); \
- }
-
- /* Control the assembler format that we output. */
-
- /* Output at beginning of assembler file. */
-
- #if 0
- #define ASM_FILE_START(FILE) \
- ( \
- fprintf (FILE, "\t.data\n"), \
- fprintf (FILE, "$help$: . = .+8 ; space for tmp moves!\n") \
- /* do we need reg def's R0 = %0 etc ??? */ \
- )
- #else
- #define ASM_FILE_START(FILE) (0)
- #endif
-
-
- /* Output to assembler file text saying following lines
- may contain character constants, extra white space, comments, etc. */
-
- #define ASM_APP_ON ""
-
- /* Output to assembler file text saying following lines
- no longer contain unusual constructs. */
-
- #define ASM_APP_OFF ""
-
- /* Output before read-only data. */
-
- #define TEXT_SECTION_ASM_OP "\t.text\n"
-
- /* Output before writable data. */
-
- #define DATA_SECTION_ASM_OP "\t.data\n"
-
- /* How to refer to registers in assembler output.
- This sequence is indexed by compiler's hard-register-number (see above). */
-
- #define REGISTER_NAMES \
- {"r0", "r1", "r2", "r3", "r4", "fp", "sp", "pc", \
- "ac0", "ac1", "ac2", "ac3", "ac4", "ac5" }
-
- /* How to renumber registers for dbx and gdb. */
-
- #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
-
- /* This is how to output the definition of a user-level label named NAME,
- such as the label on a static function or variable NAME. */
-
- #define ASM_OUTPUT_LABEL(FILE,NAME) \
- do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
-
- /* This is how to output a command to make the user-level label named NAME
- defined for reference from other files. */
-
- #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
- do { fputs ("\t.globl ", FILE); assemble_name (FILE, NAME); fputs("\n", FILE); } while (0)
-
- /* This is how to output a reference to a user-level label named NAME.
- `assemble_name' uses this. */
-
- #define ASM_OUTPUT_LABELREF(FILE,NAME) \
- fprintf (FILE, "_%s", NAME)
-
- /* This is how to output an internal numbered label where
- PREFIX is the class of label and NUM is the number within the class. */
-
- #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
- fprintf (FILE, "%s_%d:\n", PREFIX, NUM)
-
- /* This is how to store into the string LABEL
- the symbol_ref name of an internal numbered label where
- PREFIX is the class of label and NUM is the number within the class.
- This is suitable for output with `assemble_name'. */
-
- #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
- sprintf (LABEL, "*%s_%d", PREFIX, NUM)
-
- /* This is how to output an assembler line defining a `double' constant. */
-
- #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
- fprintf (FILE, "\tdouble %.20e\n", (VALUE))
-
- /* This is how to output an assembler line defining a `float' constant. */
-
- #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
- fprintf (FILE, "\tfloat %.12e\n", (VALUE))
-
- /* This is how to output an assembler line defining an `int' constant. */
-
- #define ASM_OUTPUT_INT(FILE,VALUE) \
- ( fprintf (FILE, "\t.word "), \
- output_addr_const (FILE, (VALUE)), \
- fprintf (FILE, "\n"))
-
- /* Likewise for `short' and `char' constants. */
-
- #define ASM_OUTPUT_SHORT(FILE,VALUE) \
- ( fprintf (FILE, "\t.word "), \
- output_addr_const (FILE, (VALUE)), \
- fprintf (FILE, " /*short*/\n"))
-
- #define ASM_OUTPUT_CHAR(FILE,VALUE) \
- ( fprintf (FILE, "\t.byte "), \
- output_addr_const (FILE, (VALUE)), \
- fprintf (FILE, " /* char */\n"))
-
- /* This is how to output an assembler line for a numeric constant byte.-
-
- do we really NEED it ? let's output it with a comment and grep the
- assembly source ;-)
- */
-
- #define ASM_OUTPUT_BYTE(FILE,VALUE) \
- fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
-
- #define ASM_OUTPUT_ASCII(FILE, P, SIZE) \
- output_ascii (FILE, P, SIZE)
-
- #define ASM_OUTPUT_ADDR_VEC_PROLOGUE(FILE, MODE, LEN) \
- fprintf (FILE, "\t/* HELP! */\n");
-
- /* This is how to output an element of a case-vector that is absolute. */
-
- #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
- fprintf (FILE, "\t.word L_%d\n", VALUE)
-
- /* This is how to output an element of a case-vector that is relative.
- (the pdp does not use such vectors,
- but we must define this macro anyway.) */
-
- #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
- fprintf (FILE, "\tERROR @L%d-@L%d ! error should not be used\n", VALUE, REL)
-
- /* This is how to output an assembler line
- that says to advance the location counter
- to a multiple of 2**LOG bytes.
-
- who needs this????
- */
-
- #define ASM_OUTPUT_ALIGN(FILE,LOG) \
- if ((LOG) != 0) \
- fprintf (FILE, "\t.align %d\n", 1<<(LOG))
-
- #define ASM_OUTPUT_SKIP(FILE,SIZE) \
- fprintf (FILE, "\t.=.+ %d\n", (SIZE))
-
- /* This says how to output an assembler line
- to define a global common symbol. */
-
- #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
- ( fprintf ((FILE), ".globl "), \
- assemble_name ((FILE), (NAME)), \
- fprintf ((FILE), "\n"), \
- assemble_name ((FILE), (NAME)), \
- fprintf ((FILE), ": .=.+ %d\n", (ROUNDED)) \
- )
-
- /* This says how to output an assembler line
- to define a local common symbol. */
-
- #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
- ( assemble_name ((FILE), (NAME)), \
- fprintf ((FILE), ":\t.=.+ %d\n", (ROUNDED)))
-
- /* Store in OUTPUT a string (made with alloca) containing
- an assembler-name for a local static variable named NAME.
- LABELNO is an integer which is different for each call. */
-
- #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
- ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
- sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
-
- /* Define the parentheses used to group arithmetic operations
- in assembler code. */
-
- #define ASM_OPEN_PAREN "("
- #define ASM_CLOSE_PAREN ")"
-
- /* Define results of standard character escape sequences. */
- #define TARGET_BELL 007
- #define TARGET_BS 010
- #define TARGET_TAB 011
- #define TARGET_NEWLINE 012
- #define TARGET_VT 013
- #define TARGET_FF 014
- #define TARGET_CR 015
-
- /* Print operand X (an rtx) in assembler syntax to file FILE.
- CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
- For `%' followed by punctuation, CODE is the punctuation and X is null.
-
- */
-
-
- #define PRINT_OPERAND(FILE, X, CODE) \
- { if (CODE == '#') fprintf (FILE, "#"); \
- else if (GET_CODE (X) == REG) \
- fprintf (FILE, "%s", reg_names[REGNO (X)]); \
- else if (GET_CODE (X) == MEM) \
- output_address (XEXP (X, 0)); \
- else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != SImode) \
- { union { double d; int i[2]; } u; \
- u.i[0] = CONST_DOUBLE_LOW (X); u.i[1] = CONST_DOUBLE_HIGH (X); \
- fprintf (FILE, "#%.20e", u.d); } \
- else { putc ('$', FILE); output_addr_const (FILE, X); }}
-
- /* Print a memory address as an operand to reference that memory location. */
-
- #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
- print_operand_address (FILE, ADDR)
-
- #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
- ( \
- fprintf (FILE, "\tmov %s, -(sp)\n", reg_names[REGNO]) \
- )
-
- #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
- ( \
- fprintf (FILE, "\tmov (sp)+, %s\n", reg_names[REGNO]) \
- )
-
-
- #define ASM_IDENTIFY_GCC(FILE) \
- fprintf(FILE, "gcc_compiled:\n")
-
- #define ASM_OUTPUT_DOUBLE_INT(a,b) fprintf(a,"%d", b)
-
- /* trampoline - how should i do it in separate i+d ?
- have some allocate_trampoline magic???
-
- the following should work for shared I/D: */
-
- /* lets see whether this works as trampoline:
- MV #STATIC, $4 0x940Y 0x0000 <- STATIC; Y = STATIC_CHAIN_REGNUM
- JMP FUNCTION 0x0058 0x0000 <- FUNCTION
- */
-
- #define TRAMPOLINE_TEMPLATE(FILE) \
- { \
- if (TARGET_SPLIT) \
- abort(); \
- \
- ASM_OUTPUT_INT (FILE, gen_rtx(CONST_INT, VOIDmode, 0x9400+STATIC_CHAIN_REGNUM)); \
- ASM_OUTPUT_INT (FILE, const0_rtx); \
- ASM_OUTPUT_INT (FILE, gen_rtx(CONST_INT, VOIDmode, 0x0058)); \
- ASM_OUTPUT_INT (FILE, const0_rtx); \
- }
-
- #define TRAMPOLINE_SIZE 8
- #define TRAMPOLINE_ALIGN 16
-
- /* Emit RTL insns to initialize the variable parts of a trampoline.
- FNADDR is an RTX for the address of the function's pure code.
- CXT is an RTX for the static chain value for the function. */
-
- #define INITIALIZE_TRAMPOLINE(TRAMP,FNADDR,CXT) \
- { \
- if (TARGET_SPLIT) \
- abort(); \
- \
- emit_move_insn (gen_rtx (MEM, HImode, plus_constant (TRAMP, 2)), CXT); \
- emit_move_insn (gen_rtx (MEM, HImode, plus_constant (TRAMP, 6)), FNADDR); \
- }
-
-
- /* Some machines may desire to change what optimizations are
- performed for various optimization levels. This macro, if
- defined, is executed once just after the optimization level is
- determined and before the remainder of the command options have
- been parsed. Values set in this macro are used as the default
- values for the other command line options.
-
- LEVEL is the optimization level specified; 2 if -O2 is
- specified, 1 if -O is specified, and 0 if neither is specified. */
-
- #define OPTIMIZATION_OPTIONS(LEVEL) \
- { \
- if (LEVEL >= 3) \
- { \
- flag_inline_functions = 1; \
- flag_omit_frame_pointer = 1; \
- /* flag_unroll_loops = 1; */ \
- } \
- }
-
-
- /* Provide the costs of a rtl expression. This is in the body of a
- switch on CODE.
-
- we don't say how expensive SImode is - pretty expensive!!!
-
- there is something wrong in MULT because MULT is not
- as cheap as total = 2 even if we can shift!
-
- if TARGET_SPACE make mult etc cheap, but not 1, so when
- in doubt the faster insn is chosen.
- */
-
- #define RTX_COSTS(X,CODE,OUTER_CODE) \
- case MULT: \
- if (TARGET_SPACE) \
- total = COSTS_N_INSNS(2); \
- else \
- total = COSTS_N_INSNS (11); \
- break; \
- case DIV: \
- if (TARGET_SPACE) \
- total = COSTS_N_INSNS(2); \
- else \
- total = COSTS_N_INSNS (25); \
- break; \
- case MOD: \
- if (TARGET_SPACE) \
- total = COSTS_N_INSNS(2); \
- else \
- total = COSTS_N_INSNS (26); \
- break; \
- case ABS: \
- /* equivalent to length, so same for TARGET_SPACE */ \
- total = COSTS_N_INSNS (3); \
- break; \
- case ZERO_EXTEND: \
- /* only used for: qi->hi */ \
- total = COSTS_N_INSNS(1); \
- break; \
- case SIGN_EXTEND: \
- if (GET_MODE(X) == HImode) \
- total = COSTS_N_INSNS(1); \
- else if (GET_MODE(X) == SImode) \
- total = COSTS_N_INSNS(6); \
- else \
- abort(); \
- break; \
- /* case LSHIFT: */ \
- case ASHIFT: \
- case LSHIFTRT: \
- case ASHIFTRT: \
- if (TARGET_SPACE) \
- total = COSTS_N_INSNS(1); \
- else if (GET_MODE(X) == QImode) \
- { \
- if (GET_CODE(XEXP (X,1)) != CONST_INT) \
- abort(); \
- total = COSTS_N_INSNS(INTVAL(XEXP (X,1))); \
- } \
- else if (GET_MODE(X) == HImode) \
- { \
- if (GET_CODE(XEXP (X,1)) == CONST_INT) \
- { \
- if (abs (INTVAL (XEXP (X, 1))) == 1) \
- total = COSTS_N_INSNS(1); \
- else \
- total = COSTS_N_INSNS(2.5 + 0.5 *INTVAL(XEXP(X,1))); \
- } \
- else /* worst case */ \
- total = COSTS_N_INSNS (10); \
- } \
- else if (GET_MODE(X) == SImode) \
- { \
- if (GET_CODE(XEXP (X,1)) == CONST_INT) \
- total = COSTS_N_INSNS(2.5 + 0.5 *INTVAL(XEXP(X,1))); \
- else /* worst case */ \
- total = COSTS_N_INSNS(18); \
- } \
- break;
-
-
- /* there is no point in avoiding branches on a pdp,
- since branches are really cheap - I just want to find out
- how much difference the BRANCH_COST macro makes in code */
- #define BRANCH_COST (TARGET_BRANCH_CHEAP ? 0 : 1)
-
-
- #define COMPARE_FLAG_MODE HImode
-
-